EllipsoidalFiberFoam, a novel Eulerian-Lagrangian solver for resolving translational and rotational motion dynamics of ellipsoidal fibers

Published: 9 January 2025| Version 1 | DOI: 10.17632/nf35zjvmr2.1
Contributors:
,
,

Description

A novel Eulerian-Lagrangian MPI parallelized solver is developed to resolve the dynamics of ellipsoidal fibers in the OpenFOAM platform. Due to the nonspherical shape of the ellipsoidal fibers and the dependence of the drag force on the orientation of the fiber, the solver solves the full conservation of linear and angular momentum equations, in addition to the time evolution equation for Euler's parameters, quaternions. To this end, a new parcel type is introduced to represent ellipsoidal fibers with several new properties, including Euler's parameters, angular velocity, and torque class. Finally, new member functions are defined to solve angular momentum and Euler's parameters time evolution equations. The solver is the first publicly available, robust and reliable computational framework for the numerical analysis of ellipsoidal fibers motion. It promotes the capability of the standard Lagrangian OpenFOAM solvers and libraries to capture the orientation and rotational dynamics of nonspherical particles. As validation cases, the solver was applied to four benchmarks: three-dimensional rotation of an ellipsoid in linear shear flow, two-dimensional rotation of a magnetic ellipsoid in linear shear flow subjected to a uniform magnetic field, motion of an ellipsoid in pipe flow, and ellipsoids deposition in three-dimensional bifurcation flow. Comparison of the results with analytical solutions, experimental data and in-silico results indicates close agreements and high accuracy of the developed numerical model for single- and multi-physics test cases.

Files

Categories

Computational Physics, Ellipsoid

Licence