PQ Disturbances Dataset

Published: 22 February 2023| Version 1 | DOI: 10.17632/nkdpg8mn4f.1
Contributors:
Venkataramana Veeramsetty,
,
,

Description

In order to prepare the PQ disturbances dataset, for PQ disturbances classification projects using deep learning, we consider a total of 12 disturbances, i.e., sag, swell, interruption, flicker, harmonics, transients, Swell with harmonics, Sag with harmonics, interrupt with harmonics, flicker with harmonics, swell with flicker; sag with flicker. All of these signals are created in MATLAB using a variety of parameters. They are then broken down into detail [d1, d2, d3, d4, d5, d6, d7, d8] and approximate coefficients (A8) using the Daubechies mother wavelet at level 8. The complete PQ dataset consists total 750 samples and each sample has 72 features. Each decomposed signal yields eight features: mean, standard deviation, RMS value, energy, entropy, skewness, kurtosis, and ranges. Because there are 9 decomposed signals, the total number of features is 9 x 8 = 72.

Files

Institutions

SR Engineering College

Categories

Power Quality, Deep Learning

Funding

SR University, Warangal

Licence