Machine Learning Interatomic Potentials Enable First-Principles Multiscale Modeling of Lattice Thermal Conductivity in Graphene/Borophene Heterostructures

Published: 10 May 2020| Version 1 | DOI: 10.17632/pbgscy3ptg.1
Contributors:
Bohayra Mortazavi,
Alexander V. Shapeev,
Evgeny V. Podryabinkin

Description

Data for manuscript entitled: "Machine Learning Interatomic Potentials Enable First-Principles Multiscale Modeling of Lattice Thermal Conductivity in Graphene/Borophene Heterostructures". Please find the "Supporting information.pdf" for more details.

Files

Institutions

Skolkovo Institute of Science and Technology, Leibniz Universitat Hannover

Categories

Machine Learning, Density Functional Theory, Molecular Dynamics, Thermal Conductivity, Multiscale Analysis, Two-Dimensional Material

License