Machine Learning Interatomic Potentials Enable First-Principles Multiscale Modeling of Lattice Thermal Conductivity in Graphene/Borophene Heterostructures
Published: 10 May 2020| Version 1 | DOI: 10.17632/pbgscy3ptg.1
Contributors:
Bohayra Mortazavi, , Description
Data for manuscript entitled: "Machine Learning Interatomic Potentials Enable First-Principles Multiscale Modeling of Lattice Thermal Conductivity in Graphene/Borophene Heterostructures". Please find the "Supporting information.pdf" for more details.
Files
Institutions
Skolkovo Institute of Science and Technology, Leibniz Universitat Hannover
Categories
Machine Learning, Density Functional Theory, Molecular Dynamics, Thermal Conductivity, Multiscale Analysis, Two-Dimensional Material