Published: 20-01-2021| Version 1 | DOI: 10.17632/prb2wzr77y.1
David McCarthy,
Baiqian Shi,
Miao Wang,
Stephen Catsamas


Water sampling is an essential undertaking for water utilities and agencies to protect and enhance our natural resources. The high variability in water quality, however, often necessitates a spatially distributed sampling program which is impeded by high-cost and large sampling devices. This paper presents the BoSL FAL Pump - a low-cost, easily constructed, 3D-printed peristaltic pump which can be made from commonly available components and is sized to suit even the most space constrained installations. The pump is 38mm in height and 28mm in diameter, its components cost $16 AUD and the construction time is just 12 minutes (excluding 3D printing times). The pump is driven by a direct current motor which is commonly available, cheap and allows for flexibility in the energy supply (5-12 V). Optionally, the pump has a Hall effect sensor and magnet to detect rotation rates and pumping volumes to improve the accuracy of pumping rates/volumes. The pump can be easily controlled by commonly available microcontrollers, as demonstrated by this paper which implements the ATmega328P on the Arduino Uno R3. This paper validates the pump for long-term deployments at flow rates of up to 13mL per minute in 0.14mL volume increments at accuracy levels of greater than 99%. The pump itself is scalable, allowing for a wider range of pumping rates when, for example, large volume samples are required for pathogen and micropollutant detection.