Control of tissue oxygenation by S-nitrosohemoglobin in human subjects

Published: 23 February 2023| Version 2 | DOI: 10.17632/prnbt7cv5x.2
Contributors:
,
,
,
,
,
,
,
,
,
,
,
,

Description

Data supporting the publication "Control of tissue oxygenation by S-nitrosohemoglobin in human subjects" Abstract: S-Nitrosohemoglobin (SNO-Hb) is unique among vasodilators in coupling blood flow to tissue oxygen requirements, thus fulfilling an essential function of the microcirculation. However, this essential physiology has not been tested clinically. Reactive hyperemia following limb ischemia/occlusion is a standard clinical test of microcirculatory function, which has been ascribed to endothelial nitric oxide (NO). However, endothelial NO does not control blood flow governing tissue oxygenation, presenting a major quandary. Here we show in mice and humans that reactive hyperemic responses (i.e., reoxygenation rates following brief ischemia/occlusion) are in fact dependent on SNO-Hb. First, mice deficient in SNO-Hb (i.e., carrying C93A mutant Hb refractory to S-nitrosylation) showed blunted muscle reoxygenation rates and persistent limb ischemia during reactive hyperemia testing. Second, in a diverse group of humans—including healthy subjects and patients with various microcirculatory disorders—strong correlations were found between limb reoxygenation rates following occlusion and both arterial SNO-Hb levels (n = 25; P = 0.042) and SNO-Hb/total HbNO ratios (n = 25; P = 0.009). Secondary analyses showed that patients with peripheral artery disease had significantly reduced SNO-Hb levels and blunted limb reoxygenation rates compared with healthy controls (n = 8 to 11/group; P < 0.05). Low SNO-Hb levels were also observed in sickle cell disease, where occlusive hyperemic testing was deemed contraindicated. Altogether, our findings provide both genetic and clinical support for the role of red blood cells in a standard test of microvascular function. Our results also suggest that SNO-Hb is a biomarker and mediator of blood flow governing tissue oxygenation. Thus, increases in SNO-Hb may improve tissue oxygenation in patients with microcirculatory disorders. Mouse summary data, and individual mouse pO2 traces. Human clinical summary data, and individual NIRS measurement files.

Files

Institutions

University Hospitals Harrington Discovery Institute, Novartis Institutes for BioMedical Research, Case Western Reserve University School of Medicine

Categories

Blood Flow, Hemoglobin, Cardiovascular Physiology, Genetically Modified Animal

Funding

Novartis Institutes for BioMedical Research

American Heart Association-Allen Brain Health Initiative

19PABHI34580006

National Heart, Lung, and Blood Institute

HL126900

Licence