BananaImageBD: A Comprehensive Image Dataset of Common Banana Varieties with Different Ripeness Stages in Bangladesh.

Published: 16 September 2024| Version 2 | DOI: 10.17632/ptfscwtnyz.2
Contributors:
,
,
,
,
,
,
,
,
,
,

Description

Type of Data: 256x256 px Banana images. Data Format: JPEG Contents of the Dataset: Banana varieties and ripeness stages. Number of Classes: (1) Four most popular banana varieties in Bangladesh - Bangla Kola, Chompa Kola, Sabri Kola, and Sagor Kola, and (2) Four ripeness stages - Green, Semi-ripe, Ripe, and Overripe. Number of Images: (1) Total Original (Raw) images of banana varieties = 2,471, Augmented to 7,413 images, and (2) Total Original (Raw) images of ripeness stages = 820, Augmented to 2,457 images. Distribution of Instances: (1) Original (Raw) images in each class of banana varieties: Bangla Kola = 444, Champa Kola = 994, Sabri Kola = 509, and Sagor Kola = 524; (2) Augmented images in each class of banana varieties: Bangla Kola = 1332, Champa Kola = 2,982, Sabri Kola = 1,527, Sagor Kola = 1,572; (3) Original (Raw) images in each class of Ripeness stages: Green = 212, Semi-ripe = 204, Ripe = 201, and Overripe = 203; (4) Augmented images in each class of Ripeness stages: Green = 636, Semi-ripe = 609, Ripe = 603, and Overripe = 609. Dataset Size: (1) Total size of the Original (Raw) banana varieties dataset = 17.2 MB; (2) Total size of the Augmented banana varieties dataset = 78.5 MB; (3) Total size of the Original (Raw) ripeness stages dataset = 5.55 MB; and (4) Total size of the Augmented ripeness stages dataset = 25.2 MB. Data Acquisition Process: Images of bananas are captured using high-quality smartphone cameras. Data Source Location: Local banana wholesale markets and retail fruit shops located in different places in Bangladesh. Where Applicable: The dataset presents considerable potential for fostering innovation and developing automated, efficient processes across various industries, such as precision agriculture, food processing, and supply chain management. By training Machine Learning (ML) and Deep Learning (DL) models on this dataset, it becomes possible to accurately classify banana varieties and evaluate their ripeness stages. These models can be utilized to design automated systems for determining ideal harvest times, establishing banana quality control standards, analyzing consumer preferences to guide product development and marketing strategies, and streamlining the supply chain through enhanced harvesting, sorting, packaging, and inventory management. Additionally, researchers focused on advancing Computer Vision technologies in food and agricultural sciences will find the dataset valuable for improving precision farming and food processing methods. As a result, the dataset offers substantial potential for automating banana production and processing, cutting labor costs, and boosting overall operational efficiency. Note: This dataset is an updated version of "BananaImageBD: An Extensive Image Dataset of Common Bangladeshi Banana Varieties with Different Ripeness Levels", DOI: 10.17632/ptfscwtnyz.1

Files

Institutions

East West University

Categories

Horticulture, Computer Vision, Image Processing, Object Detection, Machine Learning, Food Processing, Image Classification, Banana, Precision Agriculture, Deep Learning

Licence