Deep learning based blood abnormalities detection as a tool for VEXAS syndrome screening

Published: 14 November 2024| Version 1 | DOI: 10.17632/v5ttsjnsgk.1
Contributors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Description

Annotated image dataset from the paper : De Almeida Braga, C., Bauvais, M., Sujobert, P., Heiblig, M., Jullien, M., Le Calvez, B., Richard, C., Le Roc'h, V., Rault, E., Hérault, O., Peterlin, P., Garnier, A., Chevallier, P., Bouzy, S., Le Bris, Y., Néel, A., Graveleau, J., Kosmider, O., Paul-Gilloteaux, P., Normand, N. and Eveillard, M. (2024), Deep Learning-Based Blood Abnormalities Detection as a Tool for VEXAS Syndrome Screening. Int J Lab Hematol. https://doi.org/10.1111/ijlh.14368 Please refer to the paper for additionnal information on collection methods and findings related to the data. Please cite the paper if you use this data. The project contains .csv annotation files and image folders structured as follows : train/ centre_ID/ patient_ID/ slide_ID/ 000000.jpg 000001.jpg ... test/ centre_ID/ patient_ID/ slide_ID/ ... train.csv test.csv

Files

Institutions

Centre Hospitalier Universitaire de Nantes, Structure Federative de Recherche Francois Bonamy, Centre Hospitalier Departemental Vendee, Hospices Civils de Lyon, Laboratoire des Sciences du Numerique de Nantes, Centre Hospitalier de Saint Nazaire, Centre Hospitalier Regional Universitaire de Tours, Assistance Publique - Hopitaux de Paris, Polytech Nantes

Categories

Microscopy, Biomedical Imaging, Image Classification

Funding

Agence Nationale de la Recherche

ANR-20-THIA-0011

Licence