Targeting Non-Canonical Pathways as a Strategy to Modulate the Sodium Iodide Symporter (NIS)

Published: 19 July 2021| Version 1 | DOI: 10.17632/vf3xnyxyp9.1
Contributors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Description

The sodium iodide symporter (NIS) functions to transport iodide and is critical for successful radioiodide ablation of cancer cells. Approaches to bolster NIS function and diminish recurrence post-radioiodide therapy are impeded by oncogenic pathways that suppress NIS, as well as the inherent complexity of NIS regulation. Here, we utilised NIS in high-throughput drug screening and undertook rigorous evaluation of lead compounds to identify and target key processes underpinning NIS function. We find that multiple proteostasis pathways, including proteasomal degradation and autophagy, are central to the cellular processing of NIS. Utilizing inhibitors targeting distinct molecular processes, we pinpoint combinatorial drug strategies giving robust >5-fold increases in radioiodide uptake. We also reveal significant dysregulation of core proteostasis genes in human tumors, identifying a 13-gene riskscore classifier as an independent predictor of recurrence in radioiodide-treated patients. We thus propose and discuss a new model for targetable steps of intracellular processing of NIS function.

Files

Steps to reproduce

Please read manuscript (see title and author details above) for further information on which methods and protocols were used to gather this data.