Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and species, a study of K. Liu et al

Published: 14 May 2021| Version 2 | DOI: 10.17632/vkdycwpdjy.2
Contributors:
Kefang Liu, Xiaoqian Pan, Linjie Li, Feng Yu, Anqi Zheng, Pei Du, Pengcheng Han, Yumin Meng, Yanfang Zhang, Lili Wu, Qian Chen, Chunli Song, Yunfei Jia, Sheng Niu, Dan Lu, Chengpeng Qiao, Zhihai Chen, Dongli Ma, Xiaopeng Ma, Shuguang Tan, Xin Zhao, Jianxun Qi, George F. Gao, Qihui Wang

Description

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide and causing a global pandemic. Bat-origin RaTG13 is currently the most phylogenetically related virus. Here, we obtained the complex structure of RaTG13 receptor binding domain (RBD) with human ACE2 (hACE2), and further evaluated the binding of RaTG13 RBD to 24 additional ACE2 orthologs. By substituting residues in RaTG13 RBD with their counterparts in SARS-CoV-2 RBD, we found that residue 501, the major position found in VOCs 501Y.V1/V2/V3, plays a key role in determining the potential host range of RaTG13. We also found that SARS-CoV-2 could induce strong cross-reactive antibodies to RaTG13 and identified a SARS-CoV-2 MAb, CB6, that could cross-neutralize RaTG13 pseudovirus. These results elucidate the receptor binding and host-adaption mechanisms of RaTG13 and emphasize the importance of continuous surveillance of coronaviruses (CoVs) carried by animal reservoirs to prevent another spill-over of CoVs. The following data are the supplementary tables of this study.

Files

Categories

Natural Sciences

Licence