MC4C: Locus-Specific Enhancer Hubs And Architectural Loop Collisions Uncovered From Single Allele DNA Topologies

Published: 03-01-2018| Version 1 | DOI: 10.17632/wbk8hk87r2.1
Contributors:
Amin Allahyar,
Carlo Vermeulen,
Jeroen de Ridder,
Wouter de Laat

Description

Chromatin folding is increasingly recognized as a regulator of genomic processes such as gene activity. Chromosome conformation capture (3C) methods have been developed to unravel genome topology through the analysis of pair-wise chromatin contacts and have identified many genes and regulatory sequences that, in populations of cells, are engaged in multiple DNA interactions. However, pair-wise methods cannot discern whether contacts occur simultaneously or in competition on the individual chromosome. We present a novel 3C method, Multi-Contact 4C (MC-4C), that applies Nanopore sequencing to study multi-way DNA conformations of tens of thousands individual alleles for distinction between cooperative, random and competing interactions. MC-4C can uncover previously missed structures in sub-populations of cells. It reveals unanticipated cooperative clustering between regulatory chromatin loops, anchored by enhancers and gene promoters, and CTCF and cohesin-bound architectural loops. For example, we show that the constituents of the active -globin super-enhancer cooperatively form an enhancer hub that can host two genes at a time. We also find cooperative interactions between further dispersed regulatory sequences of the active proto-cadherin locus. When applied to CTCF-bound domain boundaries, we find evidence that chromatin loops can collide, a process that is negatively regulated by the cohesin release factor WAPL. Loop collision is further pronounced in WAPL knockout cells, suggestive of a “cohesin traffic jam”. In summary, single molecule multi-contact analysis methods can reveal how the myriad of regulatory sequences spatially coordinate their actions on individual chromosomes. Insight into these single allele higher-order topological features will facilitate interpreting the consequences of natural and induced genetic variation and help uncovering the mechanisms shaping our genome.