TUMME 2023: Tsinghua University Minnesota Master Equation program. New version announcement

Published: 5 September 2023| Version 2 | DOI: 10.17632/whcnvm2mc9.2


This is an updated version of TUMME (Tsinghua University Minnesota Master Equation program), which is a computer program for setting up and solving master equations for chemical kinetics of unimolecular and bimolecular reactions. The master equation is discretized in terms of energy bins, and rate constants are calculated from chemically significant eigenmodes. TUMME has interfaces to Gaussian 16, Polyrate 2023, and MSTor 2023 output files that allow the master equation code to obtain the microcanonical flux coefficients needed for the kernel of the master equation as calculated by conventional transition state theory (TST), variational transition state theory (VTST) with various tunneling methods, or multi-structural or multi-path VTST (MS-VTST or MP-VTST) with various tunneling methods. The tunneling methods supported include zero-curvature tunneling (ZCT), small-curvature tunneling (SCT), large-curvature tunneling (LCT), and microcanonically optimized multidimensional tunneling (μOMT). For mechanisms involving only unimolecular isomerization (no bimolecular pairs), TUMME can set up and solve a conservative master equation for both rate constants and time-dependent energy-bin populations. For mechanisms involving bimolecular pairs, TUMME 2023 can set up and solve two kinds of master equation: (i) a nonconservative master equation for calculating rate constants of bimolecular reactions and (ii) a conservative master equation that includes bimolecular association in the transition matrix and that can be used for calculating the time evolution of the concentration of a pseudo-first-order bimolecular reactant. TUMME is written in double precision with Python 3; quadruple and octuple precision are also available for some subtasks in C++. The Python code can run in serial or parallel (MP or MPI), and C++ code can run on a single processor or on multiple processors with OpenMP. The program includes a manual and a tutorial.



Physical Chemistry, Computational Physics, Chemical Reaction Kinetics, Tunneling