Solution of the Skyrme—Hartree—Fock equations in the Cartesian deformed harmonic oscillator basis II. The program HFODD
Description
Abstract We describe the code HFODD which solves the nuclear Skyrme—Hartree—Fock problem by using the deformed Cartesian harmonic oscillator basis. The user has a possibility of choosing among various symmetries of the nuclear HF problem for rotating or nonrotating nuclei; they vary from the non-axial parity-invariant nuclear shapes, through those also breaking the intrinsic parity, towards the least-restrictive case corresponding to only one symmetry plane. The code provides a solution for a complete... Title of program: HFODD (v1.60r) Catalogue Id: ADFL_v1_0 Nature of problem The nuclear mean-field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity- dependent Skyrme interaction, the nuclear mean-field is local and velocity dependent. This allows an effective and fast solution of the self-consistent Hartree-Fock equations even for heavy nuclei and for different configurations, deformations, excitation energies, or angular momenta. Versions of this program held in the CPC repository in Mendeley Data ADFL_v1_0; HFODD (v1.60r); 10.1016/S0010-4655(97)00005-2 ADFL_v1_1; HFODD (v1.75r); 10.1016/S0010-4655(00)00121-1 ADFL_v2_0; HFODD (v2.08j); 10.1016/j.cpc.2004.02.003 ADFL_v2_1; HFODD; version. 2.08k; 10.1016/j.cpc.2005.01.014 ADFL_v2_2; HFODD (v2.40h); 10.1016/j.cpc.2009.08.009 ADFL_v3_0; hfodd (v2.49t); 10.1016/j.cpc.2011.08.013 This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2018)