Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (V) HFODD(v2.08k)

Published: 1 May 2005| Version 1 | DOI: 10.17632/y9mwsnh72t.1
J. Dobaczewski, P. Olbratowski


Abstract We describe the new version (v2.08k) of the code HFODD which solves the nuclear Skyrme–Hartree–Fock or Skyrme–Hartree–Fock–Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. Similarly as in the previous version (v2.08i), all symmetries can be broken, which allows for calculations with angular frequency and angular momentum tilted with respect to the mass distribution. In the new version, three minor errors have been corrected. ... Title of program: HFODD; version. 2.08k Catalogue Id: ADFL_v2_1 [ADVA] Nature of problem The nuclear mean-field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean-field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree-Fock equations, even for heavy nuclei, and for various nucleonic (n-particle n-hole) configurations, deformations, excitat ... Versions of this program held in the CPC repository in Mendeley Data ADFL_v1_0; HFODD (v1.60r); 10.1016/S0010-4655(97)00005-2 ADFL_v1_1; HFODD (v1.75r); 10.1016/S0010-4655(00)00121-1 ADFL_v2_0; HFODD (v2.08j); 10.1016/j.cpc.2004.02.003 ADFL_v2_1; HFODD; version. 2.08k; 10.1016/j.cpc.2005.01.014 ADFL_v2_2; HFODD (v2.40h); 10.1016/j.cpc.2009.08.009 ADFL_v3_0; hfodd (v2.49t); 10.1016/j.cpc.2011.08.013 This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2018)



Nuclear Physics, Computational Physics