GeoDualSPHysics: a high-performance SPH solver for large deformation modelling of geomaterials with two-way coupling to multi-body systems
Description
This paper presents GeoDualSPHysics, an open-source, graphics processing unit (GPU)-accelerated smoothed particle hydrodynamics (SPH) solver designed for simulating large-deformation geomaterial and their interactions with multi-body systems. Built upon the popular open-source SPH solver DualSPHysics, the solver leverages its highly parallelised SPH scheme empowered by the CUDA parallelisation while extending its capabilities to large-deformation geomechanics problems with particles up to the order of 10⁸ on a single GPU. The SPH geomechanics model is enhanced by a noise-free stress treatment technique that stabilizes and accurately resolves stress fields, as well as an extended modified Dynamic Boundary Condition (mDBC) ensuring first-order consistency in solid boundary modelling. Additionally, the coupling interface between DualSPHysics and the multi-body dynamics solver Project Chrono is adapted for simulating interactions between geomaterials and multiple interacting rigid bodies. Benchmark validations confirm the solver’s accuracy in resolving geotechnical failures, impact forces on solid boundaries, and geomaterial-multibody system interactions. GPU profiling of the newly implemented CUDA kernels demonstrates their performance metrics are similar to those of the original DualSPHysics solver. Performance evaluations demonstrate its saving in memory usage of 30-50% and improvements in computational efficiency over existing SPH geomechanics solvers, achieving practical simulation speeds for systems with tens of millions of particles and showing a speedup of up to 180x compared to the optimised multi-core CPU implementation. These advances position GeoDualSPHysics as a versatile, efficient tool for high-fidelity simulations of complex geotechnical systems.