Unpaired MR-CT Brain Dataset for Unsupervised Image Translation

Published: 1 March 2022| Version 1 | DOI: 10.17632/z4wc364g79.1
Contributors:
Omar Al-Kadi,
,
,
,

Description

The Magnetic Resonance - Computed Tomography (MR-CT) Jordan University Hospital (JUH) dataset has been collected after receiving Institutional Review Board (IRB) approval of the hospital and consent forms have been obtained from all patients. All procedures has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki). The dataset consists of 2D image slices extracted using the RadiAnt DICOM viewer software. The extracted images are transformed to DICOM image data format with a resolution of 256x256 pixels. There are a total of 179 2D axial image slices referring to 20 patient volumes (90 MR and 89 CT 2D axial image slices). The dataset contains MR and CT brain tumour images with corresponding segmentation masks. The MR images of each patient were acquired with a 5.00mm T Siemens Verio 3T using a T2-weighted without contrast agent, 3 Fat sat pulses (FS), 2500-4000 TR, 20-30 TE, and 90/180 flip angle. The CT images were acquired with Siemens Somatom scanner with 2.46mGY.cm dose length, 130KV voltage, 113-327 mAs tube current, topogram acquisition protocol, 64 dual source, one projection, and slice thickness of 7.0mm. Smooth and sharp filters have been applied to the CT images. The MR scans have a resolution of 0.7x0.6x5 mm^3, while the CT scans have a resolution of 0.6x0.6x7 mm^3. More information and the application of the dataset can be found in the following research paper: Alaa Abu-Srhan; Israa Almallahi; Mohammad Abushariah; Waleed Mahafza; Omar S. Al-Kadi. Paired-Unpaired Unsupervised Attention Guided GAN with Transfer Learning for Bidirectional Brain MR-CT Synthesis. Comput. Biol. Med. 136, 2021. doi: https://doi.org/10.1016/j.compbiomed.2021.104763.

Files

Steps to reproduce

Alaa Abu-Srhan; Israa Almallahi; Mohammad Abushariah; Waleed Mahafza; Omar S. Al-Kadi. Paired-Unpaired Unsupervised Attention Guided GAN with Transfer Learning for Bidirectional Brain MR-CT Synthesis. Comput. Biol. Med. 136, 2021. doi: https://doi.org/10.1016/j.compbiomed.2021.104763.

Categories

Image Segmentation, Biomedical Imaging, Image Synthesis, Brain Imaging, Magnetic Resonance Imaging of Brain, Computed Tomography of Head, Brain Lesion

Licence