Supplemental material - Blood metabolomics and impacted cellular mechanisms during transition into lactation in dairy cows that develop metritis
Description
The objective of this study was to identify metabolites associated with metritis and use them for identification of cellular mechanisms affected during transition into lactation. Holstein cows (n = 104) had blood collected in the prepartum period (d-14 ± 6), at calving (d0), and at the day of metritis diagnosis (d7 ± 2). Cows with reddish or brownish, watery, and fetid discharge were diagnosed with metritis (n = 52). Cows with metritis were paired with herdmates without metritis (n = 52) based on DIM. The metabolome of plasma samples was evaluated using untargeted gas chromatography time-of-flight mass spectrometry. Univariate analyses included t-tests and fold change analyses. Metabolites with false discovery rate (FDR) adjusted P ≤ 0.10 on t-tests were used for partial least squares – discriminant analysis PLS-DA coupled with permutational analysis using 2,000 permutations. Metabolites with FDR adjusted P ≤ 0.10 on t-tests were also used for enriched pathway analyses and identification of cellular processes. Cows that developed metritis had affected cellular processes associated with lower amino acid metabolism in the prepartum period, greater lipolysis, cell death, and oxidative stress at calving and at metritis diagnosis, and greater leukocyte activation at calving, but lower immune cell activation at metritis diagnosis. In summary, cows that developed metritis had plasma metabolomic changes associated with greater lipolysis, oxidative stress, and a dysregulated immune response which may predispose cows to metritis development.
Files
Steps to reproduce
Methods can be found in the manuscript
Institutions
Categories
Funding
National Institute of Food and Agriculture
Grant # 2019-67015-29836, Accession No: 1019435