Critical rare earth elements mismatch global wind power ambitions
Published: 11 June 2020| Version 3 | DOI: 10.17632/zdgtky97cz.3
Contributor:
Kun PengDescription
The raw data and code for calculating rare earth demand under four wind power scenarios.
Files
Steps to reproduce
MATLAB
Institutions
Shandong University at Weihai
Categories
Code Reuse
Related Links
Article
1. World Bank, (2020). Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition. Washington, DC.is related to this dataset
Article
2. World Bank, (2017). The Growing Role of Minerals and Metals for a Low Carbon Future. Washington, DC.is related to this dataset
Article
3. Watari, T., Mclellan, B.C., Giurco, D., Dominish, E., Yamasue, E., (2019). Total Material Requirement for the Global Energy Transition to 2050 : A focus on transport and electricity. Resour. Conserv. Recycl. 148, 91–103.is related to this dataset
Article
4. Månberger, A., Stenqvist, B., (2018). Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development. Energy Policy 119, 226–241.is related to this dataset
Article
5. Elshkaki, A., Graedel, T.E., (2013). Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J. Clean. Prod. 59, 260–273.is related to this dataset
Article
6. Valero, A., Valero, A., Calvo, G., Ortego, A., (2018). Material bottlenecks in the future development of green technologies. Renew. Sustain. Energy Rev. 93, 178–200.is related to this dataset
Article
7. Koning, A., Kleijn, R., Huppes, G., Sprecher, B., van Engelen, G., Tukker, A., (2018). Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 129, 202–208.is related to this dataset
Article
8. Habib, K., Wenzel, H., (2014). Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J. Clean. Prod. 84, 348–359.is related to this dataset
Article
9. Elshkaki, A., Shen, L., (2019). Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications. Energy 180, 903–917.is related to this dataset
Article
10. Wang, P., Chen, L.-Y., Ge, J.-P., Cai, W., Chen, W.-Q., (2019). Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition. Appl. Energy 253, 113612.is related to this dataset
Article
11. Fishman, T. and Graedel, T. (2019). Impact of the establishment of US offshore wind power on neodymium flows. Nat. Sustain. 2, 332.is related to this dataset
Article
12. Joint Research Centre, European Commission (2017). JRC Wind Energy Status Report – 2016 Edition. https://setis.ec.europa.eu/publications/relevant-reports/jrc-wind-energy-status-report-%E2%80%93-2016-edition.is related to this dataset
Article
13. Joint Research Centre, European Commission (2016). Substitution of critical raw materials in low-carbon technologies: lighting, wind turbines and electric vehicles. https://setis.ec.europa.eu/publications/relevant-reports/substitution-of-critical-raw-materials-low-carbon-technologies.is related to this dataset
Article
14. Lacal-Arántegui, R. (2015). Materials use in electricity generators in wind turbines – state-of-the-art and future specifications. J. Clean. Prod. 87, 275-283.is related to this dataset
Article
15. U.S. Geological Survey (2015). Minerals Yearbook-Rare Earth 2015. https://www.usgs.gov/centers/nmic/rare-earths-statistics-and-information.is related to this dataset
Article
16. Schulze, R., Lartigue-Peyrou, F., Ding, J., Schebek, L. and Buchert, M. (2017). Developing a life cycle inventory for rare earth oxides from ion-adsorption deposits: key impacts and further research needs. Journal of Sustainable Metallurgy 3, 753-771.is related to this dataset
Article
17. Lee, J. C. and Wen, Z. (2018). Pathways for greening the supply of rare earth elements in China. Nat. Sustain. 1, 598.is related to this dataset