Skip to main content

Journal of Molecular and Cellular Cardiology

ISSN: 0022-2828

Visit Journal website

Datasets associated with articles published in Journal of Molecular and Cellular Cardiology

Filter Results
1970
2024
1970 2024
10 results
  • Data for: Complete Remodeling of Substrate Consumption in the Murine sTAC Model of Heart Failure
    Carbon-13 NMR spectra used for isotopomer analysis. the data is in the raw Bruker format that should be generally accessible.
    • Dataset
  • Partial deletion of titin's C-zone alters cardiac function by reducing the operating sarcomere length range
    Titin’s C-zone is an inextensible segment in titin, comprised of 11 super-repeats and located in the cMyBP-C-containing region of the thick filament. Previously we showed that deletion of titin’s super-repeats C1 and C2 (TtnΔC1-2 model) results in shorter thick filaments and contractile dysfunction of the left ventricular (LV) chamber but that unexpectedly LV diastolic stiffness is normal. Here we studied the contraction-relaxation kinetics from the time-varying elastance of the LV and intact cardiomyocyte, cellular work loops of intact cardiomyocytes, Ca2+ transients, cross-bridge kinetics, and myofilament Ca2+ sensitivity. Intact cardiomyocytes of TtnΔC1-2 mice exhibit systolic dysfunction and impaired relaxation. The time-varying elastance at both LV and single-cell levels showed that activation kinetics are normal in TtnΔC1-2 mice, but that relaxation is slower. The slowed relaxation is, in part, attributable to an increased myofilament Ca2+ sensitivity and slower early Ca2+ reuptake. Cross-bridge dynamics showed that cross-bridge kinetics are normal but that the number of force-generating cross-bridges is reduced. In vivo sarcomere length (SL) measurements revealed that in TtnΔC1-2 mice the operating SL range of the LV is shifted towards shorter lengths. This normalizes the apparent cell and LV diastolic stiffness but further reduces systolic force as systole occurs further down on the ascending limb of the force-SL relation. We propose that the reduced working SLs reflect titin’s role in regulating diastolic stiffness by altering the number of sarcomeres in series. Overall, our study reveals that thick filament length regulation by titin’s C-zone is critical for normal cardiac function. For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu
    • Dataset
  • Partial deletion of titin's C-zone alters cardiac function by reducing the operating sarcomere length range
    Titin’s C-zone is an inextensible segment in titin, comprised of 11 super-repeats and located in the cMyBP-C-containing region of the thick filament. Previously we showed that deletion of titin’s super-repeats C1 and C2 (TtnΔC1-2 model) results in shorter thick filaments and contractile dysfunction of the left ventricular (LV) chamber but that unexpectedly LV diastolic stiffness is normal. Here we studied the contraction-relaxation kinetics from the time-varying elastance of the LV and intact cardiomyocyte, cellular work loops of intact cardiomyocytes, Ca2+ transients, cross-bridge kinetics, and myofilament Ca2+ sensitivity. Intact cardiomyocytes of TtnΔC1-2 mice exhibit systolic dysfunction and impaired relaxation. The time-varying elastance at both LV and single-cell levels showed that activation kinetics are normal in TtnΔC1-2 mice, but that relaxation is slower. The slowed relaxation is, in part, attributable to an increased myofilament Ca2+ sensitivity and slower early Ca2+ reuptake. Cross-bridge dynamics showed that cross-bridge kinetics are normal but that the number of force-generating cross-bridges is reduced. In vivo sarcomere length (SL) measurements revealed that in TtnΔC1-2 mice the operating SL range of the LV is shifted towards shorter lengths. This normalizes the apparent cell and LV diastolic stiffness but further reduces systolic force as systole occurs further down on the ascending limb of the force-SL relation. We propose that the reduced working SLs reflect titin’s role in regulating diastolic stiffness by altering the number of sarcomeres in series. Overall, our study reveals that thick filament length regulation by titin’s C-zone is critical for normal cardiac function. For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu
    • Dataset
  • Dataset related to the article "MiRNA profiling revealed enhanced susceptibility to oxidative stress of endothelial cells from bicuspid aortic valve"
    This record contains raw data related to the article "MiRNA profiling revealed enhanced susceptibility to oxidative stress of endothelial cells from bicuspid aortic valve" Abstract Aims Calcific aortic valve stenosis (CAVS) is the most frequent manifestation of aortic valve disease and the third leading cause of cardiovascular disease in the Western countries associated with significant morbidity and mortality. An active biological progression involving inflammation and oxidation leading to valve endothelial damage is considered a hallmark of the early stages of valve degeneration. However, tricuspid (TAV) and bicuspid (BAV) aortic valve deterioration are considered to differ only by shear stress. We hypothesized that endothelial cells (EC) derived from BAV and TAV patients have different miRNA expression patterns and thus distinct pathways could lead to endothelial damage in BAV than TAV patients. Methods and results We isolated ECs from patients with bicuspid or tricuspid aortic valve, which underwent surgery due to CAVS. MiRNA expression profile by PCR revealed eight upregulated miRNAs between BAV and TAV ECs. Functional analysis identified that BAV ECs presented altered cellular response to oxidative stress and DNA damage stimulus via p53 and alteration in the intrinsic apoptotic signaling pathway. GPX3 and SRXN1 mRNA were express at lower levels in BAV compared to TAV ECs, leading to an increment of DNA double-strand breaks. BAV ECs had a sustained apoptosis activation when compared to TAV ECs. This difference was exacerbated by oxidative stress stimulus leading to a reduced survival rate but completely reverted by miR-328-3p inhibition. Conclusion The present data showed molecular differences in oxidative stress susceptibility, DNA damage magnitude, and apoptosis induction between ECs derived from BAV and TAV patients.
    • Dataset
  • NMR structure of the N-domain of troponin C bound to switch region of troponin I and 3-methyldiphenylamine (solvent exposed mode)
    • Dataset
  • NMR structure of the N-domain of troponin C bound to switch region of troponin I and 3-methyldiphenylamine (peptide mode)
    • Dataset
  • NMR structure of the N-domain of troponin C bound to switch region of troponin I
    • Dataset
  • The structural and functional effects of the Familial Hypertrophic Cardiomyopathy-linked cardiac troponin C mutation, L29Q
    • Dataset
  • The structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin I
    • Dataset
  • Solution Structure of the Regulatory Domain of Human Cardiac Troponin C in Complex with the Switch Region of cardiac Troponin I and W7
    • Dataset