STORM: Scrape-off layer turbulence in tokamak fusion reactors
Description
The scrape-off layer of a tokamak fusion reactor carries the plasma exhaust from the hot core plasma to the material surfaces of the reactor vessel. The heat loads imposed by the exhaust are a critical limit on the performance of fusion power plants. Turbulent transport of the plasma regulates the width of the scrape-off layer plasma and must be modelled to understand the intensity of these heat loads. STORM is a plasma turbulence code capable of simulating three dimensional turbulence across the full scrape-off layer of a tokamak fusion reactor, using a drift reduced, collisional fluid model. STORM uses mostly finite difference schemes, with a staggered grid in the direction parallel to the magnetic field. We describe the model, geometry and initialisation options used by STORM, as well as the numerical methods, which are implemented using the BOUT++ plasma simulation framework. BOUT++ has been enhanced alongside the development of STORM, providing better support for staggered grid methods. We summarise these enhancements, including a detailed explanation of the parallel derivative methods, which underwent a major update for version 4 of BOUT++.