Journal of Quantitative Spectroscopy and Radiative Transfer

ISSN: 0022-4073
Visit Journal website
Datasets associated with articles published in Journal of Quantitative Spectroscopy and Radiative Transfer
Filter Results
27 results
  • TABULATED SPECTROSCOPIC DATA FOR CO(4+) The file ‘CO_Kirby_Table.xlsx’ contains tabulated spectroscopic data calculated from the ETMF of Kirby and Cooper (Ref. 20 in the article). Certain cells do not contain a value - these values were omitted because they correspond to values where the r-centroid for the band is outside of the valid range of the Re(r) curve published by Kirby and Cooper. ——— TEMPERATURE FILES All temperature files begin with ‘Temp’. ‘TempMax.dat’ : Maximum temperature bound given 3 atomic temperature profiles. Column 1 = radius (cm), Column 2 = temperature (K) ‘TempMin.dat’ : Minimum temperature bound given 3 atomic temperature profiles. Column 1 = radius (cm), Column 2 = temperature (K) ‘TempProf_Ar.dat’ : Measured temperature profile from the Ar 764 nm line. Column 1 = radius (cm), Column 2 = nominal temperature (K), Column 3 = uncertainty in temperature (K) ‘TempProf_C.dat’ : Measured temperature profile from the C 833 nm line. Column 1 = radius (cm), Column 2 = nominal temperature (K), Column 3 = uncertainty in temperature (K) ‘TempProf_O.dat’ : Measured temperature profile from the O 777 nm line. Column 1 = radius (cm), Column 2 = nominal temperature (K), Column 3 = uncertainty in temperature (K) NOTE: For atomic temperature profiles from files ‘TempProf_Ar.dat’, ‘TempProf_C.dat’ and ‘TempProf_O.dat’, the 3rd column represents the uncertainty. The temperature is T +/- the quoted uncertainty on column 3. ——— SPECTRUM FILES For all of the spectrum files (all files beginning with ‘spec’), the first column is wavelength (nm) and the second column is the intensity (mW/cm^2/nm/sr). To obtain the complete spectrum from 140 to 250 nm, it suffices to read and plot each of the spectral files on the same graph. NOTE: ‘spec195’ is divided into 3 files. This was simply because the Carbon line was saturated at the integration times optimal for looking at the CO molecular features. The ‘LoIT’ file corresponds to the low integration time optimal for the carbon atomic feature. The other files ‘blue’ and ‘red’ were obtained with the integration appropriate for the CO molecular features. For the ‘spec255’ files, the same reasoning applies to the ‘spec255Exp.dat’ and ‘spec255ExpLoIT.dat’ files.
    Data Types:
    • Tabular Data
    • Dataset
    • Document
  • Data Types:
    • Other
    • Dataset
  • The 2D-Fourier transform of DIPI interferograms and the 2D-autocorrelation of the corresponding DIH reconstructed in-focus images are in good agreement in shape and size.
    Data Types:
    • Dataset
    • File Set
  • Data Types:
    • Other
    • Dataset
  • Data Types:
    • Other
    • Dataset
  • Data for Figs.3-6: the ratio a/lambda_0, gamma/lambda_0 as encoded in the file names. The terms corr=0 means no corrections, corr=1, radiative correction only, corr=2 - nonradiative correction only, corr=3 - both corrections used. Columns: omega/omega_0, Qe, Qs, Qa. Data for Fig.7: same as above but a=5 means "a=5nm" and a=10 means "a=10nm"; the ratio gamma/omega_p=0.002 is fixed. The bfirst column is omega/omega_p. Data for Fig.9. Cubic lattice (qa_met_c) and distorted BCC lattice (qa_met_bcc). The columns are: (1) - L (size of the square in terms of the lattice step); (2) - sigma_e/sigma_g; (3) - sigma_a/sigma_g; (4) - sigma_s/sigma_g. Here sigma_g is the geometrical cross section, sigma_e is the extinction cross section, sigma_s is the scattering cross section and sigma_a is the absorption cross section. Only the first two columns (sigma_e/sigma_g vs L) are shown in Fig.3. Not all data are displayed in the plots.
    Data Types:
    • Other
    • Dataset
  • Data for: Sensitivity of snowfall radar reflectivity to maximum snowflake size and implications for snowfall retrievals. .zip folder includes additional figures to the main article and sensitivities~$\Delta \mathrm{dB}Z_{e} / \Delta D_{\mathrm{max}}$ of modeled snowfall radar reflectivity factors~dB$Z_{e}$ to the cutoff size~$D_{\mathrm{max}}$ of the snowflake size distribution~(SSD) are attached, calculated according to Section~2 in the main article. Each .txt file refers to one of the five analyzed snowflake representations, one of the four analyzed radar frequency bands, and one of the three analyzed SSD shape parameters~$\mu$, as indicated in the filename, and contains values of $\Delta \mathrm{dB}Z_{e} / \Delta D_{\mathrm{max}}$ in units of dB~mm$^{-1}$, calculated at all 48 analyzed SSD slope parameters of $\Lambda=0.3,\,0.4,\ldots,\,4.9,\,5.0$~mm$^{-1}$ for all 234 successive $D_{\mathrm{max}}$ pairs within $0.1\leq D_{\mathrm{max}}\leq 23.5$~mm in steps of $\Delta D_{\mathrm{max}} = 0.1$~mm. A .py script is also included that allows a basic visualization of the attached sensitivity data.
    Data Types:
    • Dataset
    • File Set
  • Complex refractive index of CNC as a function of wavelength (400 -700 nm) .
    Data Types:
    • Tabular Data
    • Dataset
  • The resulting \emph{ab initio} point-wise functions are represented in a table format in the electronic supplemented material together with the molecular constants evaluated for all bound vibrational levels of the $^{36,38,40}$Ar$^{1,2}$H$^+$ isotopologues
    Data Types:
    • Dataset
    • File Set
  • See the README file and the abstract of paper. All intensities use 100% abundance, i.e. no terrestrial abundances.
    Data Types:
    • Dataset
    • Document
    • Text
    • File Set
1